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Interfaces with a single growth inhomogeneity and anchored boundaries
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The dynamics of a one-dimensional growth model involving attachment and detachment of particles is
studied in the presence of a localized growth inhomogeneity along with anchored boundary conditions. At large
times, the latter enforce an equilibrium stationary regime which allows for an exact calculation of roughening
exponents. The stochastic evolution is related to a spin Hamiltonian whose spectrum gap embodies the dy-
namic scaling exponent of late stages. For vanishing gaps the interface can exhibit a slow morphological
transition followed by a change of scaling regimes which are studied numerically. Instead, a faceting dynamics
arises for gapful situations.
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I. INTRODUCTION

After two decades of investigations the dynamics
growing interfaces continues to be a subject of enorm
interest, providing a framework to compare experimen
simulations, and theory, let alone the wide range of appl
tions encountered@1#. Despite the vast diversity of mor
phologies in which growing surfaces can evolve, most
merical analysis and theoretical studies pointed out the o
of scaling regimes emerging at both large time and len
scales. This enabled a classification of apparently dissim
processes in terms of universality classes characterized
set of scaling exponents which dominate the late evolu
stages@1,2#.

A common feature associated with these processes is
emergence of rather slow temporal crossovers in which
early dynamics exhibits quite different roughening charac
istics from those observed in the asymptotic limit@3#. The
presence of growth rate inhomogeneities or growth defe
localized within small spatial regions of the substrate pla
~columnar defects! is one of the simplest mechanism
whereby such crossovers can be observed@1,4#. Another pos-
sibility is realized by anchoring conditions through whic
nonequilibrium fluctuations are completely suppressed at
interface boundaries@5#. The main interest in those situation
is in the morphological phase transitions that may occu
large times. In this work we investigate the change of sca
regimes accompanying these transitions by means of a
totype restricted solid on solid~RSOS! growth model@6,7#
combining both of these mechanisms in one dimension.
we shall see, anchored boundaries are essential for the
pearance of equilibrium regimes which in turn allow for
simple calculation of roughening exponents at late stage

Morphological transitions in confined geometries actua
occur in flexible manifolds characterizing physical pheno
ena as diverse as the unbinding of a directed polymer fro
wall @8#, and the depinning of a flux line from a dislocatio
in a type II superconductor@9#. At the phenomenologica
level of the Kardar-Parisi-Zhang equation@10#, thoroughly
studied in the continuum theory of kinetic roughening, lar
scale morphology changes can be accounted for by assu
a growth velocity that is a symmetric function of the loc
inclination of the interface@4#, so the latter can increase i
growth rate by adopting a nonvanishing tilt. Therefore
1063-651X/2003/68~4!/041603~9!/$20.00 68 0416
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macroscopic hill can emerge in response to a sufficien
large growth rate inhomogeneity as this morphology gro
faster than the planar interface, in turn allowing the system
accommodate the external bias@1#. Here, we show that a
similar scenario may also arise under equilibrium and n
equilibrium conditions dominated by unusual scaling
gimes.

In studying the latter it is useful to consider the me
square fluctuations of the average interface heighth̄(t)
which yields a measure of the interfacewidth

W2~L,t !5
1

L (
n

^@hn~ t !2h̄~ t !#2&, ~1!

where the brackets denote an ensemble average over all
sible evolutions of heights$hn% forming the interface at time
t, which grows on a substrate of sizeL. On general grounds
it can be argued thatW scales as@11#

W~L,t !5Lz f ~ t/Lz!, ~2!

where the scaling functionf (c) satisfies

f ~c!;H cz/z for c!1,

const for c@1.
~3!

Hence, it follows that finite systems saturate asW}Lz,
whereas in the thermodynamic limit the asymptotic growth
ruled by the exponentb5z/z, that is,W}tb. The exponent
z describes the roughness dependence of the interface w
on the typical substrate size. In turn the exponentz, often
known as the dynamic exponent, gives the fundamental s
ing between length and time.

In practice, Eqs.~2! and ~3! yield a standard procedur
which is often followed to extract and corroborate scali
exponents predicted by other approaches and certainly
will make use of this hypothesis as well. However, due to
presence of the crossovers referred to above, a complem
tary procedure would be needed if the former becomes
ceptionally slow. To this aim, we will also exploit the know
equivalence between the RSOS growth models already m
tioned and a one-dimensional gas of hard-core particles
dergoing an asymmetric exclusion process@1,6,7# ~see Fig.
1!. The idea is to cast the evolution operator of the associa
©2003 The American Physical Society03-1
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master equation of this latter process@12# into a suitable
quantum spin representation@13,14# lending itself more
readily for a finite size scaling analysis. Since the dynam
exponentz of Eq. ~2! is ultimately embodied in the gap be
havior of the evolution operator~or spin ‘‘Hamiltonian’’!, the
study of its lower spectrum can then provide information
the late evolution stages in a more direct manner. Eviden
this methodology along with the evaluation of the roughe
ing exponentz—simplified greatly by the anchoring bound
ary conditions—circumvents the problem of arbitrarily lon
transient regimes though on the other hand is limited
verely by the affordable system sizes.A posteriori, it will
turn out that already modest lengths can yield clear finite s
trends. This strategy will be explained in Sec. II and its
sults compared with those of standard techniques give
Sec. III. We end the paper with Sec. IV which contains o
conclusions, along with some remarks on extensions of
work.

II. SPIN REPRESENTATION

Let us consider the dynamics of lattice aggregation m
els with no overhangs, including both adsorption and deso
tion of monomers at random locations of a one-dimensio
interface@6,7#, such as that described in Fig. 1. As usual,
a coarse grained level of description the state of a surfac
a given time is represented by a set of single-valued fu
tions hn(t) measuring the surface heights at positions 1<n
<L11 of the growth substrate. As it was mentioned abo
we are interested in boundary conditions that suppress c
pletely height fluctuations atn51 andL11 for all times,
i.e., the interface is anchored at the boundaries. For simp
ity, we study the case whereL is even andh15hL11,
whereas deposition and evaporation ratese, e8 are taken
uniformly throughout the system except on siteL/211
where these probability values are respectivelye0 ,e08 . To
prevent the divergence of interface fluctuations in the bu
we impose a RSOS constraint, namely,uhn112hnu[1, ;
n,t. Specifically, growth~evaporation! eventshn→hn12,
@hn→hn22#, with n52, . . . ,L, occur only at local minima
~maxima! of the evolving interface. These basic proces

FIG. 1. Schematic representation of monomer depositi
evaporation onto a RSOS interface with anchored boundarie
h15hL11. The equivalent spin-1

2 (sn[hn112hn) or hard-core par-
ticle dynamics involves a left~right! particle hopping with ratee
(e8) for monomer adsorption~desorption!. The corresponding rate
for the inhomogeneity athL/211 aree0 ande08 .
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and their transition rates are schematized in Fig. 1. In tu
the typical configurations resulting from these rules at la
times are displayed by the snapshots of Fig. 2.

It is often convenient to consider the interface slope rat
than the height, so hereafter we will exploit the known ma
ping between RSOS interface dynamics and quantum sp1

2

systems. This correspondence can be easily visualized in
scheme of Fig. 1. Associating the height differencesn
[hn112hn to an eigenvalue of thez component, say, of the
Pauli operatorsW n for site n, all relevant quantities of the
interface, such as its width and height-height correlatio
can be casted in terms of1

2 -spinors. By construction, it is
clear that the interface heights~relative toh1) are obtained as
hn5( j 51

n21sj for n52, . . . ,L11. Therefore, the anchoring
conditionh15hL11 imposes the vanishing of the total ma
netization throughout the underlying spin kinetics.

As is well known, the probability distribution of suc
Markov processes is controlled by a master equation@12#

] tP~s,t !5(
s8

@R~s8→s!P~s8,t !2R~s→s8!P~s,t !#,

~4!

whose transition probability ratesR(s→s8)P$e,e8,e0 ,e08%
now denote the~biased! spin exchanges at which a gener
configuration us&[us1 , . . . ,sL& evolves to us8& through a
single exchange of two consecutive spins. Starting from
given probability distributionuP(0)&5(sP(s,0)us&, Eq. ~4!
can be conveniently thought of as a Schro¨dinger-like repre-
sentation in which the ensemble averaged state vectoruP(t)&
~playing the role of wave function! can be evaluated at sub
sequent times from the action of an evolution operator~or
Hamiltonian! on the initial state, namely, uP(t)&
5e2HtuP(0)& @13#. The specific form ofH can be readily
obtained by introducing spin-1

2 raising and lowering opera
tors s1,s2, along with spin occupation fieldsn̂5s1s2. It
is then straightforward to show that the stochastic dynam
of Eq.~4! is accounted for by the operator

H52 (
n51

L21

~ensn
1sn11

2 1en8sn11
1 sn

2!

1 (
n51

L21

@enn̂n11~12n̂n!1en8n̂n~12n̂n11!#, ~5!

-
at

FIG. 2. Possible evolution scenarios. Typical snapshots foL
5103 usinge8/e51 with e08/e050.5 aftert5106 steps per height
~left!; e8/e5e08/e050.5 at t5500 ~center!; and e8/e50.5 with
e08/e055 at t5500 ~right!. For eÞe8, fluctuations are progres
sively reduced on their way to the pile configuration denoted
dotted lines with slopes61.
3-2
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whereen , en8 are shorthands denoting, respectively,

en ,en85H e0 ,e08 for n5
L

2
,

e,e8 otherwise,

~6!

while the anchoring conditionh15hL11 confines the dynam
ics within the subspace(nn̂n[L/2. The biased hopping
terms of Eq. ~5! clearly describe the original growth
desorption events~see Fig. 1!, while conservation of prob-
ability requires in turn the appearance of the remaining~di-
agonal! particle-vacancy correlators. We address the rea
to Ref.@14# for a more detailed derivation in related system

A. Detailed balance

Before continuing with an alternative spin representat
more suitable to study dynamical aspects at large times
pause and consider the steady state~SS! of Eq. ~5! along
with its implications on the interface character.

Given two spin configurationsus&5u . . . ,sn ,2sn , . . . &,
us8&5u . . . ,2sn ,sn , . . . &, differing at most in the state o
two neighboringn,n11 locations, evidently detailed ba
ance probabilities in Eq.~4! will hold provided that

P~s!en85P~s8!en if ^s8uHus&52en8 ,

P~s!en5P~s8!en8 if ^s8uHus&52en . ~7!

This can be readily satisfied defining a hard-core part
~up-spin! potential

V~n!5(
j 51

n

lnS e j

e j8
D 5nlnS e

e8
D 1 lnS e0e8

e08e
D Q~n2L/2!,

~8!

through which the equilibrium distribution is simply ob
tained as

P~s1 , . . . ,sL!}exp2F1

2 (
n

V~n!~11sn!G . ~9!

When e5e8, these probabilities further enable us to co
struct the partition function~normalization constant!, height
profiles~spin densities!, as well as the spin correlation func
tions needed to derive the equilibrium interface width. F
eÞe8 a rather involved recursive relation in the partic
number can be obtained for all these quantities, but its a
lytic solution is not reachable by standard means@15#. How-
ever, this case doesnot yield a rough interface as statistic
fluctuations become exponentially suppressed in time~see
Sec. III B!.

If e5e8, the step function potential~8! permits to divide
the system into two independent regions@1,L/2#, @L/2
11,L# with (m

L/2) configurations havingL/22m and m par-
ticles, respectively (0<m<L/2). Hence, the partition func
tion normalizing the above SS distribution is given by
04160
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Z5 (
m50

L/2 S L

2
m
D 2

r m, ~10!

where r 5e08/e0. Using analogous arguments, we can a
obtain the reduced partition functionZi which arises from
the occupation of a given sitei, and evaluate the spin densit
^s i

z&52Zi /Z21. This results in

Zi55 (
m50

L/221 S L

2
21

m
D S L

2
m
D r m for i<

L

2
,

(
m50

L/221 S L

2
m11

D S L

2
21

m
D r m11 otherwise,

~11!

which implies anequilibrium shockprofile stemming en-
tirely from the inhomogeneous potential~8! at finite particle
densities. In particular, forL→` the analysis of Eqs.~10!
and ~11! yields the following discontinuity:

^sn
z&5@122Q~n2L/2!#^s&, ^s&5

Ae02Ae08

Ae01Ae08
. ~12!

Thus, in the height representation, so long ase08/e0,1
(.1) Eq. ~12! entails the sideways growth of a hill~valley!
whose sides at large times are tilted by an amount of6^s&
relative to the substrate. Though anchoring conditions w
used throughout, tilted profiles are also observable in n
equilibrium systems such as those considered in Ref.@4# us-
ing periodic boundary conditions.

To determine whether this morphology is actually roug
we focus attention on the equilibrium height fluctuationsdn

[^hn
2&2^hn&

2. Consequently, first we evaluate the spin-sp
correlations involved in̂ hn

2&5(n21)12( i , j <n21^s i
zs j

z&.
Thus, once more we recur to the combinatorial reasoning
calculate the reduced partition functionsZi , j resulting from
the occupation of two specific sitesi , j . After some elemen-
tary steps we obtain

Zi , j5

¦

(
m50

L/222 S L

2
22

m
D S L

2
m
D r m for i , j <

L

2
,

(
m50

L/222 S L

2
21

m11
D S L

2
21

m
D r m11 for i<

L

2
, j ,

(
m50

L/222 S L

2
m12

D S L

2
22

m
D r m12 otherwise,

~13!

from which the required spin correlations are computed
^s i

zs j
z&54Zi , j /Z2(^s i

z&1^s j
z&11). In the large size limit

the analysis of Eqs.~10!, ~11!, and ~13! ultimately yields a
rough interface~see leftmost snapshot of Fig. 2!, whose
3-3



n
th

tu
p-

t

he
in

t.

th
ale

is

e
ri
a
ity

th

the

n-
he
gu-

s-

ify

n-

hat
n

-
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height fluctuations~canceled at the boundaries!, result dis-
tributed asdn}(n21)@12(n21)/L#. This simple form is
in contrast with that observed in nonequilibrium SS of a
chored self-organized interfaces in which fluctuations in
upper part of the hill are substantially reduced@5#.

The above correlations can also characterize the sa
tion width referred to in Sec. I. Specifically, in the spin re
resentation it can be easily checked thatW2 may be rewritten
as

W2~L !5
L221

6L
1

2

L2 (
i , j

i ~L2 j !^s i
zs j

z&. ~14!

In Fig. 3 we display the size dependence ofW for several
values ofe08/e0. It turns out that the roughness exponenz
bears the discontinuous character of Eqs.~11! and~13!. More
precisely,

z5H 1 if e08Þe0 ,

1/2 if e085e0 .
~15!

Often, a value ofz51 is special because it signals that t
assumption of a well defined average orientation of the
terface~parallel to the substrate plane! becomes inconsisten
Certainly, this is in line with the tilt obtained in Eq.~12!. For
e085e0 the conventional roughening is recovered; here
tilt vanishes and the orientational fluctuations at large sc
estimated, for example, asW(L,t→`)/L, decrease withL.
We shall revisit this point later on in Sec. III A.

B. Self-adjoint representation

As is known @12#, detailed balance guarantees the ex
tence of a representation in which the evolution operator~5!
is self-adjoint. Although an exact solution of the~real! H
spectrum in the thermodynamic limit seems unlikely irr
spective of its representation, at least a self-adjoint desc
tion can facilitate the numerical analysis of a finite size sc
ing approach. Specifically, one can readily find a similar
transformation to map Eq.~5! into a Hermitian matrix, and
thereafter obtain the lower eigenmodes dominating

FIG. 3. Equilibrium interface width fore/e851. Upper and
lower dashed curves denote, respectively, the casese08/e050 and 1,
whereas solid lines going downwards stand fore08/e050.1, 0.3, 0.5,
and 0.7.
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asymptotic kinetics via recursion-type algorithms, e.g.,
Lanczos technique@16#, appropriate to study fair system
sizes.

To this aim and with the aid of the particle potential i
troduced in Eq.~8!, we rotate the above operator around t
z spin direction using a pure imaginary site dependent ar
mentw(n),

w~n!5
i

2
V~n!. ~16!

This rotation is produced by the nonunitary similarity tran
formationU5e2 iS with S5 1

2 (nw(n)sn
z , which in turn re-

sults in the direct product

U5 ^ nUn ,Un5Fe1/4V(n) 0

0 e2(1/4)V(n)G . ~17!

While the diagonal terms of Eq.~5! remain unaltered byU, it
is straightforward to show that

Unsn
6Un

215e7 iw(n)sn
6 . ~18!

From this latter transformation, one can immediately ver
that the rotated~self-adjoint! operatorH5UHU21 becomes
an openXXZ ferromagnet with a defect coupling underlocal
magnetic fields, namely,

H52
1

2 (
n51

L21

Jn@sn
xsn11

x 1sn
ysn11

y 1Dn~sn
zsn11

z 21!#

2h~s1
z2sL

z !2~h02h!~sL/2
z 2sL/211

z !, ~19!

where

Jn5Aenen8,

Dn5~en1en8!/A4enen8,

h05~e02e08!/4, ~20!

h5~e2e8!/4,

with en , en8 taken as in Eq.~6!. Thus, we are left with a
diagonalization problem which, to some extent, is now co
trollable by standard recursive techniques~Sec. III!.

For the sake of completeness it is worth pointing out t
the similarity transformation~17! also enables us to obtai
the SS distribution~9!. In fact, exploiting thatH is a stochas-
tic operator, we can express itsleft SS ^c̃u as an equally
weighted sum of all accessible configurations@12#, i.e., ^c̃
u[^0u(n1 , . . . ,nL/2

sn1

2
•••snL/2

2 , where^0u denotes the ferro-

magnetic down-spin state. Hence, by constructionuc0&
5U21uc̃& is a ~unnormalized! ground state ofH, and there-
fore the SS distribution in the initialH representation is con
structed as
3-4
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U22uc̃&} (
n1 , . . . ,nL/2

e2V(n1)
•••e2V(nL/2)sn1

1
•••snL/2

1 u0&,

~21!

thus recovering the equilibrium distribution~9!.
Returning to the dynamics, the average value of a dia

nal quantityŴ—such as the ‘‘width operator’’ involved in
Eq. ~14!—varies according tôc̃uŴe2HtuP(0)& @14#. Since
Ŵ is invariant underU, it is a simple matter to check that i
the self-adjoint representation^Ŵ& reads

^Ŵ&~L,t !5^c0uŴuc0&1 (
l.0

e2lt^c0uŴucl&^cluUuP~0!&,

~22!

where$ucl&% is a complete orthonormal set of eigenstates
H ~all with l>0). As expected, the role of initial condition
becomes irrelevant near the equilibrium regime. If the sp
trum gap vanishes in the thermodynamic limit, the wid
approach to equilibrium will involve arbitrarily large time
for sufficiently large systems. In those situations, finite s
scaling analyses of the first excited levelslL would then
provide the dynamicz-exponent ruling over the late rough
ening stages referred to in Sec. I.

A distinctive feature arises when all components of
total angular momentumS5 1

2 (nsW n are preserved byH,
namely, fore5e8 ande05e08 . SinceŴ just involves opera-
tors of the forms i

zs j
z @see Eq.~14!#, then rather restrictive

selection rules hold for its matrix elements in Eq.~22!. Spe-
cifically, given that$ucl&% can be classified according to th
total spinS @S2[S(S11)#, the nonvanishing contribution
to Eq. ~22! come only from statesucl& having S5L/221
andL/222 @17#. What should be emphasized here is that
soon as@H,S#Þ0 the effectivedensity of states, partly re
sponsible for the temporal asymptotic behavior of Eq.~22!
whenL→`, is drastically modified as these selection ru
no longer apply. We will come back to this issue within t
numerical context of Sec. III A.

III. NUMERICAL RESULTS

To explore the dynamical consequences of these a
ments we have carried out Monte Carlo simulations as w
as finite size scaling analyses of the RSOS model referre
above, for a variety of situations. First we focus attention
the subcasee5e8 where the roles ofe0 and e08 are clearly
interchangeable, so we restrict the analysis to, say,e08/e0

<1. In this situation the interface actually roughens and
hibits two different scaling regimes accompanying a la
scale morphological transition. The discussion of differe
bulk probability rates is addressed at the second part of
section. It will turn out there that fluctuations decay ve
rapidly and prevent the roughening of anchored interface
large times. Instead, a faceting dynamics will emerge reg
less of the inhomogeneity growth rates.
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Starting from an initially flat configuration we studied th
evolution of the interface width and monitored the heig
profiles at different growth stages. Figure 4 displays
width behavior obtained fore08/e050.5 and 0.8. The rathe
slow crossover~particularly for 0.8, where it is only incipi-
ent! deterred us from using larger substrates, though preli
nary simulations averaged over few evolution samples in
cated similar trends. The early growing stages suppo
power law growthW}tb extended over more than four de
cades with an exponentb.1/4. This typical diffusive behav-
ior is accompanied initially by a height profile which is a
most parallel to the substrate, except in the neighborhoo
the growth inhomogeneity. As is shown in the inset of Fig.
on approaching the asymptopia however, the slopes of
hillsides steepen until they reach the equilibrium tilt allud
to in Eq. ~12!. This progressive orientation departure sign
a large scale morphological transition which in turn is a
reflected in the increase of the growth exponent. In the
dynamic stages, this can be well fitted by a value ofb
.1/2 for nearly two decades.

An alternative determination of this rather peculiar val
@18# can be implemented by resorting to the phenomenolo
cal scaling assumption referred to in Eq.~2! along with the
findings and arguments of Sec. II. Notice that this provid
two independent numerical procedures to estimate the
namic z exponent needed for the knowledge ofb. On one
hand, the former can be calculated by studying the finite s
behavior of the first excited levels ofH ~in principle, just the
lowest will do!, so we diagonalized it exactly via a recursio
type Lanczos algorithm@16# applied on the zero magnetiza
tion subspace. The huge dimensionality of this sector, gr
ing as (L

L/2), as well as the lack of translational symmetry
the evolution operator, limited our computations to cha
lengths of up to 24 spins. Nevertheless, they proved to
sufficient for a fair estimation of the spectrum gap. We dire
the reader to Fig. 5 which suggests a decrease}L2z for the

FIG. 4. Growth of interface width fore/e851 using e08/e0

50.5 ~circles! and e08/e050.8 ~squares showing an incipien
asymptotic deviation! for L5104 averaged over 200 histories. Th
early and late slopes of dashed lines are, respectively,b. 1/4 and
1/2. The inset displays the height profile evolution fore08/e050.5
averaged over 2000 histories withL51000, at t51.53104,
63104, 23105, and 106 @the dotted line at the top following
closely the tilts of Eq. ~12!#.
3-5
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gap and other excited levels consistent with a common va
of z52. On the other hand, an independent evaluation of
exponent can be attained by studying the scaling behavio
the interface width@Eq. ~2!#. Figure 6 exhibits the results o
our simulations for growth substrates of 2500 and 50
heights on approaching their saturation regimes. Here,
data collapse was obtained upon setting (z,z).(2,1), which
confirms not only the Lanczos estimation but also corro
rates the roughness exponent quoted in Eq.~15!. Thus, from
Eq. ~2! it follows that the fast roughening behavior alrea
observed in Fig. 4 is now recovered by the ratioz/z.

Since the Lanczos analysis continues to yield values
z52 holding up to the homogeneous situation~as it should!,
a natural question one can pose is therefore the follow
through which feature does the dynamics render a c
pletely different roughening behavior at large times as s
ase0Þe08 ? In an attempt to provide a plausible explanati
for the appearance of this abrupt change@see also Eq.~15!#,
we resort to the observations given by the end of Sec. I

FIG. 5. Finite size behavior of the three lowest excited levels
the evolution operator~5! for e/e851 ande08/e050.5. Solid lines
have slopesz52. The inset compares the lower spectrum of t
case (L520, 10 spin excitations, framed at the left!, with the effec-
tive levels of the regular situation (e0 /e0851, L520, 2 spin exci-
tations!.

FIG. 6. Asymptotic finite size scaling regime of the interfa
width averaged over 200 histories usinge/e851, e08/e050.5, for
L55000 ~squares!, and L52500 ~circles!. The saturation values
~horizontal line! coincide with those of Eqs.~13! and ~14!. The
dashed line is fitted with the slope calculated from the data of F
3 and 5~i.e., b5z/z). The inset exhibits an early scaling regim
which behaves diffusively (b51/4), like the initial data of Fig. 4.
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The inset of Fig. 5 displays the lower part of theH spectrum
for both inhomogeneous and homogeneous situations.
stated above, the latter involves at mostL(L21)/2 contrib-
uting levels with S5L/221,L/222, while in the former
case the sum of Eq.~22! becomes much denser as@H,S#
Þ0 and an exponential number ofnew states arises. O
course, the new matrix elements might eventually cha
from zero in a continuous manner, but the density of state~a
measure of which is given by the inverse of the level sp
ing! varies abruptly. Moreover, some of the low lying exc
tations controlling the asymptotic regime (t→` holding
t/Lz!1) suggest a rather narrowly peaked structure whic
entirely absent fore05e08 .

Also, it is interesting to examine whether the large sc
morphology transition embodied in the slow temporal cro
over ofW affects the usual scaling hypothesis of Eqs.~2! and
~3!. Thus, we turn to the early dynamic scaling ofW shown
by the inset of Fig. 6. In contrast to the faster growth o
served at late stages, here the data collapse arises by s
standard diffusive exponents (z,z).(2,1/2), which in turn
yield a scaling function}(t/L2)1/4 in agreement with the
early b exponent measured in Fig. 4. Hence, combining
late and early scaling regimes it follows that

W~L,t,t!5Lz f t~ t/L2!, ~23!

wheret is a crossover time which depends solely one08/e0

~eventually diverging in the limite08→e0) and f t(c) is a
universal function defined over three different scales as

f t~c!;H c1/4 for c!t/L2 ~z51/2!

c1/2 for t/L2!c!1 ~z51!

const for c@1.

~24!

In what follows we finally address theeÞe8 situation.

B. eÅe8

A quick glance at the evolution of the interface wid
displayed in Fig. 7 might render the~wrong! impression that
the general caseeÞe8, e0Þe08 bears similar characteristics
However this time the growth exponent exhibits
asymptotic value ofb.3/2, which is not understandable i
terms of conventional kinetic roughening theories@18#. In
fact, as we shall see below, the interface does not rough

Let us first provide a simple explanation for this larg
value of b by means of the following heuristic conside
ations. For clarity of argument, assume vanishing desorp
rates ande5e0. Starting from a flat configuration, say wit
h2k51,h2k2150, a deterministic dynamics arises as (L
22)/2 deposition attempts occur on the initial (L22)/2 in-
terface minima. Next, we are left withh2k51,h2k2152,h1
5hL11[0, and (L24)/2 contiguous minima over which
new (L24)/2 depositions will be once again determinist
By iterating this argumentationt times, this dynamics lead
to a configuration resembling a truncated pyramid~see cen-
tral snapshot of Fig. 2, though for a nondeterministic situ
tion, i.e., e8Þ0). Specifically, there will be (L22t)/2 con-
tiguous minima in betweenht125t11 andhL2t215ht12.

f

s.
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Using the common definition of Eq.~1!, it is then easy to
verify that the ‘‘width’’ of such configuration is simply

W~L,t !5A2t3

3L
@11O~ t/L !#, i.e., b53/2. ~25!

The above argument describes rather afaceting process
~terminating att;L/2), which strictly applies fore850.
Certainly, as soon ase8.0 the dynamics is no longer dete
ministic, no matter how smalle8 is. However, fore8!1 the
early desorption attempts become gradually unsuccessfu
the active region of the interface, i.e., the number of av
able minima decreases inasmuch as the sideways regio
increasingly jammed~Fig. 2!. Thus, at large times a proces
similar to a faceting dynamics might be expected, at least
small bulk desorption rates. In fact, fore.e8 ande0>e08 our
numerical simulations confirm these considerations. No
ferences were observed between sampling histories at l
times, so fluctuations become asymptotically negligible.
e0,e08 the situation is similar though another faceting pr
cess shows up around the inhomogeneity, as displayed b
height profiles in the inset of Fig. 7~see also rightmost snap
shot of Fig. 2!. Of course, fore,e8 the roles ofe0 and e08
are interchanged. Ultimately, the whole process approach
nonfluctuating pile of slope61, so long ase8Þe.

To provide an alternative understanding of this fast flu
tuation decay for generic rate values, we recur once mor
the analysis of the spectrum of the evolution operator~19!.
The gap and levels obtained for the sizes within our reach
shown in Fig. 8, but in contrast to thee5e8 situation, here
the finite size trend of these quantities needs further analy
To this end, we studied theH spectrum within the subspac
Sz5L/221 ~single spin excitation!, which corresponds to
the much simpler anchoring casehL112h15L22. For this
sector, it is straightforward to check that Eq.~19! reduces to
the tridiagonal matrix

FIG. 7. Evolution of the interface width fore8/e50.5, e08/e0

55, andL5106. The initial and final slopes of dashed lines a
b51/4 and 3/2, respectively. From top to bottom the inset exhi
the profile of 104 heights att553104, 23104, 104, and 43103.
Both width and height fluctuations become negligible at large tim
At the width level, results of differente08/e0 values closely follow
each other in all evolution stages. In turn, fore08<e0 the early
profile has no tilt around the inhomogeneity.
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H53
e8 g 0 ••• ••• 0

g e1e8 g � A

0 � � �

A � g e1e08 g
0 0

0 g
0 e81e0 g � A

� � � 0

A � g e1e8 g

0 ••• ••• 0 g e

4 ,

~26!

where

g52Aee8, g
0
52Ae0e08. ~27!

Evidently, this just constitutes the simplest approximation
the many body problem ofSz50. Nevertheless, the compar
sons of Fig. 8 indicate that the eigenvalues of Eq.~26! yet
provide an excellent estimation of the actual gap and ot
excited levels obtained through the Lanczos scheme.~It is
worth pointing out in passing that an excellent fit of the
quantities was also found fore5e8). Using the spectrum
gap of the single spin approximation, the inset of Fig.
strongly suggests that thesamegap will persist forl1 in the
thermodynamic limit of Eq.~19!. Similar gapful results were
obtained for other values ofe08/e0. Thus, fluctuations would
be suppressed at large times, which is in line with the alm
invariant values ofW observed over many sample historie

Also, at the gap level the density of states diverges asL in
the simplified version of the problem. ForSz50 however,
one might conjecture a much stronger divergence, proba
growing like ;eL, as the number of levels between tw
single excitations tends to increase exponentially with
system size~at least for the small lengths at hand!. This
would leave us with a saturation time}L in Eq. ~22!, which
on the other hand would be in agreement with the termi
tion time of the faceting process idealized above. In fact,
numerical simulations displayed in Fig. 9 lend further su

s

s.

FIG. 8. Finite size behavior of lower excited levels in the sing
spin approximation (Sz5L/221) of operator~26! for e8/e5e08/e0

51/2 ~solid lines!. Circles and triangles stand, respectively, for le
els l1 and l2 of Hamiltonian ~5! with Sz50. Above l2, further
collective excitations~not shown! appear between successive so
lines. The inset suggests a power law convergence ofl1(L)
~circles,Sz50) towards the gapg obtained in the main panel.
3-7
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port to these speculations. Clearly, these results exhibit b
a saturation time}L, as well as an asymptotic scaling r
gime consistent with Eq.~25!, i.e., W/L}(t/L)3/2, during
which both height and width fluctuations are absent.

In contrast, at early stages the interface displays typ
roughening features. Specifically, the inset of Fig. 9 exhib
a diffusive scaling regimeW/AL5 f (t/L2), in turn corrobo-
rated by the growth exponentb.1/4 obtained in larger sys
tems ~Fig. 7!. This strong departure from the faceting d
scription occurs on temporal scales smaller than a cross
time which turns out to decrease whene8/e→0 ~irrespective
of e08/e0), but eventually diverging in the limite8→e, e08
→e0.

IV. CONCLUSIONS

We have analyzed the characteristics of both early
asymptotic dynamics of one-dimensional anchored interfa
under a growth inhomogeneity. There are two sets of res
related, respectively, to equal or different growth-evaporat
rates in the bulk.

For e5e8, even the slightest departure from the homog
neouse05e08 situation is able to produce finite interface til
as well as huge temporal crossovers. The problems pose
the latter have been bypassed studyingseparatelythe rough-
nessz and dynamicz exponents, the evaluation of which wa
significantly simplified by the appearance of equilibrium S
In analyzing finite size scaling trends of the spectrum gap
the Lanczos method, we found no changes with respec
the homogeneous situation, i.e.,z[2. Consequently, it was

FIG. 9. Late scaling regime ofW for e8/e5e0 /e0850.5 using
L5104 ~circles! and L523104 ~squares!. The dashed line slope
and scaling form are both consistent with the faceting process
jectured in Eq.~25!, whereas differences between sample histor
become gradually negligible. In contrast, the inset results, avera
over 200 histories, indicate an early scaling regime which is ty
cally diffusive (z51/2, z52, b5z/z).
ug
,
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argued that the breaking of the full rotational invariance
the evolution operator is ultimately responsible for the em
gence of a much heavier density of states accounting for b
the discontinuity of the roughness exponentz ~or alterna-
tively, for a different asymptotic growth exponentb) as well
as for the rise of a new scaling regime at large times. Th
expectations were confronted independently with stand
numerical simulations monitoring the evolution of the inte
face profile and width. At early stages, the latter exhibits
diffusive scaling regime having basically a nontilted profi
~except in the inhomogeneity neighborhood!, but progres-
sively approaching a final regime consistent with our scal
exponentsz51,z52. However fore0→e08 , in practice this
new regime might occur at a time so large as to rende
numerically unobservable.

For eÞe8 the situation is entirely different. Here, th
spectrum gap does not vanish in the thermodynamic li
regardless of the inhomogeneity rates, and fluctuations
tween evolution histories at large times become negligib
This confirms a heuristic description~in turn, tested indepen
dently by simulations!, suggesting that the asymptotic dy
namics becomes almost deterministic. We may also think
a synchronous discrete time process in which a rando
chosen finite fraction, or possibly all of the growth sites, a
simultaneously updated in a single time step. One charac
istic feature of such synchronous models is the occurrenc
faceting transitions at large times@1#, which also turned out
to be the case here. In contrast, at early stages the inte
actually roughens following a typical diffusive pattern a
companied by a standard scaling regime.

The analysis of nonequilibrium asymptotic situation
even ford51, might become rather involved. In this sens
it will be interesting to elucidate whether a direct evaluati
of z could be achieved using the matrix approach to
asymmetric exclusion process@19# with both injection and
ejection of particles at the boundaries, including one or m
hopping defects~that is, unanchored boundaries and grow
inhomogeneities in the height representation!.

Higher dimensional extensions of this study would
clearly desirable and more realistic. However, the analysi
the corresponding quantum spin analogy should involv
projector operator to discard all those spin configuratio
having magnetic loops, i.e.,( rs r

zÞ0, with r on a given
closed path. Otherwise, the mapping would no longer rep
sent an interface. The issue as to whether or not such id
are actually practical ind.1 remains quite open.
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